XC Engineering Srl

  • Home
  • Company
    • Expertise
    • History
    • Partners
  • Services
    • Consultancy
    • Reselling
      • FLOW-3D
      • FLOW-3D Cast
      • IMPROVEit
      • Support and trainings
    • Software development
  • Industries
    • Aerospace
    • Automotive
    • Biotechnologies
    • Coastal & Maritime
    • Ship Design
    • Water & Environmental
    • Casting
    • Coating
    • Energy
    • Manufacturing
    • Microfluidics
  • Contact us
    • Job opportunities
    • Thesis/Stage
  • English
    • English English
    • Italiano Italiano
    • Français Français
You are here: Home / Hydraulics / Environmental / Interaction Between Waves and Breakwaters

27/05/2015 by Raul Pirovano

Interaction Between Waves and Breakwaters

This article is an adapted version of an article  published in the journal of the Engineering Association for Offshore and Marine in Italy by Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti. The first three authors are users at the University of Salerno; Mr. Mascetti is an engineer at XC Engineering, Flow Science’s associate for Italy and France.

The design of breakwaters must be based on the full understanding of the interaction of a complex natural system (the sea and shores) with artificial structures (breakwaters). Typically, design work entails extensive physical modelling, which can be quite expensive and time-consuming.

Until recently, the complex aspects of breakwater behavior were considered too challenging for detailed numerical simulations. This is especially the case for breakwaters consisting of rubble mounds composed of blocks of concrete or rocks in which water flows through complex paths with unsteady motion.

The gap between numerical and physical, investigations, has narrowed, thanks to the advancement of computing technology. It is now possible to accurately represent a solid structure consisting of individual blocks which interacts with the flow, so as to create a numerical flow domain within the empty spaces between the blocks. This enables the evaluation of the effect of the full hydrodynamic behavior, including convective terms, and the effects of turbulence, which cannot be taken into account with the classical Darcy scheme in which the breakwaters are approximated as homogeneous porous media.

Modeling Rubble Mound Breakwaters

The following examples describe cases where rubble mound breakwaters are modelled on the basis of their real geometry, taking into account the hydrodynamic interactions with the wave motion.

Artificial blocks
Figure 1: Artificial blocks
Submerged Breakwaters
Figure 2a: Submerged Breakwaters
Emerged Breakwater - Accropode regular & Accropode irregular
Figures 2b and 2c: Emerged Breakwater – Accropode regular & Accropode irregular

The work takes into consideration a schematic representation of a natural stone mound, reproduced as a set of spheres, and was further developed to consider commonly-used artificial blocks such as the cube, the modified cube, the antifer, the tetrapod, the accropode, the accropode II, the coreloc, the xbloc,and the xbloc base (Fig. 1).

Breakwaters, both submerged and emerged, were sized by making use of standard empirical formulas as available in the literature and numerically constructed by overlapping individual blocks following real geometric patterns, modelling the structure as in the full size construction and in the physical modelling (Fig. 2).

In order to validate the quality of the proposed procedure, three different geometries were considered for the submerged breakwater: solid, porous, solid-porous (Fig. 2a), while for the emerged breakwater, two different geometries were used, according to the shape of the elements: regular and random (Fig. 2b – 2c).

Read more…

Filed Under: Environmental, Hydraulics Tagged With: hydraulic, simulation, water

Recent Posts

  • FLOW-3D CAST v5.1 Released
  • Simulation and optimization to minimize foundry defects
  • Vertical Spike Wave
  • Design optimization for mass production
  • Increasing Discharge Capacity with the Piano Key Weir

XC Engineering SRL

via Matteotti 7, 22063
Cantù (CO) - ITALY
Tel.Fax: (+39) 031 715 999

  • English (en)English
  • Italiano (it)Italiano
  • Français (fr)Français

Tags

additive manufactory casting cfd dam Discharge energy fabbrication additive fabbricazione additiva FLOW-3D FLOW-3D Cast Fluid Dynamics foundry HPDC hydraulic hydraulics IMPROVEit laser LPDC Numerical optimization ottimizzazione Pelton Piano Key Weir powerplant river saldatura sand molded casting simulation spike wave toilet transient turbine vertical spike wave water wave welding

XC in social media

  • Facebook
  • Google+
  • LinkedIn
  • YouTube
Home | Company Data | Terms & Conditions | Privacy Policy |
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPTDECLINE
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
SAVE & ACCEPT