XC Engineering Srl

  • Home
  • Company
    • Expertise
    • History
    • Partners
  • Services
    • Consultancy
    • Reselling
      • FLOW-3D
      • FLOW-3D Cast
      • IMPROVEit
      • Support and trainings
    • Software development
  • Industries
    • Aerospace
    • Automotive
    • Biotechnologies
    • Coastal & Maritime
    • Ship Design
    • Water & Environmental
    • Casting
    • Coating
    • Energy
    • Manufacturing
    • Microfluidics
  • Contact us
    • Job opportunities
    • Thesis/Stage
  • English
    • English English
    • Italiano Italiano
    • Français Français
You are here: Home / Casting / Sleeve filling and slow shot phase analysis with FLOW-3D Cast

20/10/2015 by Raul Pirovano

Sleeve filling and slow shot phase analysis with FLOW-3D Cast

High pressure Die Casting is a complex field of foundry. The liquid hot metal is generally poured into a shot sleeve for few seconds, until the desired volume is reached. Then, after a short waiting time, the plunger pushes the metal into the die cavity. First a slow shot phase is performed to avoid air entrainment in the sleeve, then a final high speed phase that fill the casting part in a very short amount of time.

One of the targets of any producer is to find the best compromise between a fast process, to increase the productivity and to reduce the heat losses, and a slow filing and shot necessary to minimize the air entrainment.

FLOW-3D Cast, due to its capabilities, is one of the best software to analyse this process. It can combine easily moving objects, mass sources, heat transfer and solidification, everything in fast and accurate simulations. Several studies were already done to determine the best plunger velocity curve, also coupling FLOW-3D Cast to numerical optimization software.

The aim of the present simulation, instead, is to focus on the sleeve filling, underlining the possibility to control also this phase and the defects that could arise from a not-optimal solution.

In the video both fluid and walls are coloured by temperature, with two different colour scales. The heat transfer coefficients have been artificially increased to emphasize the temperature change. Thanks to this fact, it is possible to notice that some drops of metal flow on the beginning of the runner system, solidifying and influencing the casting phase until they are melted again. It is possible also to notice the big waves generated when the filling is finished, and how this waves contribute to entrain some big air bubbles that are pushed into the casting part, generating defects.

Filed Under: Casting Tagged With: casting, FLOW-3D, foundry, simulation

Recent Posts

  • FLOW-3D CAST v5.1 Released
  • Simulation and optimization to minimize foundry defects
  • Vertical Spike Wave
  • Design optimization for mass production
  • Increasing Discharge Capacity with the Piano Key Weir

XC Engineering SRL

via Matteotti 7, 22063
Cantù (CO) - ITALY
Tel.Fax: (+39) 031 715 999

  • English (en)English
  • Italiano (it)Italiano
  • Français (fr)Français

Tags

additive manufactory casting cfd dam Discharge energy fabbrication additive fabbricazione additiva FLOW-3D FLOW-3D Cast Fluid Dynamics foundry HPDC hydraulic hydraulics IMPROVEit laser LPDC Numerical optimization ottimizzazione Pelton Piano Key Weir powerplant river saldatura sand molded casting simulation spike wave toilet transient turbine vertical spike wave water wave welding

XC in social media

  • Facebook
  • Google+
  • LinkedIn
  • YouTube
Home | Company Data | Terms & Conditions | Privacy Policy |
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPTDECLINE
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
SAVE & ACCEPT