XC Engineering Srl

  • Home
  • Société
    • Expertise
    • Histoire
    • Partenaires
  • Services
    • Conseil
    • Logiciels commerciaux
      • FLOW-3D
      • FLOW-3D Cast
      • IMPROVEit
      • Support et formation
    • Développement logiciels
  • Secteurs industriels
    • Aerospace
    • Automotive
    • Biotechnologie
    • Ingénierie maritime
    • Conception de navires
    • Hydraulique et Environnement
    • Fonderie
    • Peinture
    • Energie
    • Secteur manufacturier
    • Microfluidique
  • Nous contacter
    • Opportunité de travail
    • Thèse et Stage
  • Français
    • English English
    • Italiano Italiano
    • Français Français
Vous êtes ici : Accueil / Hydraulics / Success Criterion for Fish Passages

27/05/2015 by Raul Pirovano

Success Criterion for Fish Passages

This article was contributed by Matthias Haselbauer, RMD Consult and Carlos Barreira Martinez, Federal University of Minas Gerais.

In Brazil, the use of surface water has constantly increased during the past 150 years. To maintain navigability, to generate hydropower, and to defend against flooding, a large number of obstacles and diversions have been erected that interfere with natural flows. Fish and other small animals that inhabit the rivers suffer from these alterations. A massive decrease in the number of fish to the point of extinction of some species has been observed. With the simultaneous decrease in fish, bird, and mammal populations, the enormous human impact on the food chain has become obvious.

In an attempt to keep rivers open for fish, a large number of fish passages have been built in Brazil, but their efficiency in respect to both their biological and technical aspects was often poor. The flow situations in the passages, often designed using one-dimensional and empirical assumptions, result in an excessive selectivity and in poor locations. In contrast to the traditional one-dimensional design of fish passages more appropriate tools are available today. With computational fluid dynamic (CFD) simulations, not only the mean velocity field can be investigated, but also transient flow effects, which have considerable influence on the usefulness of fish passages. To achieve optimum results a coupling of hydraulic and biological considerations is essential in the design process.

In this work, turbulent coherent structures inside a periodic vertical sluice gate fish passage are discussed. Between two pools, with lengths of 4.50m and widths of 3.30 each, the flow has to pass a small vertical opening with an extension of 0.50m (Fig. 1). The CFD simulations were carried out with FLOW-3D. With periodic boundary conditions in the flow direction the achievable resolution was about 2.5cm. The level difference of the water surface Δh between the two pools was 20cm. Hence, the maximum of the absolute velocity is about 2 m/s ≈ Δh*2g. The entire potential energy is transformed into kinetic energy and later dissipated in the pool. Areas of high velocities form where jets are detached from the walls.

Absolute velocities in the vertical sluice gate fish pass

By means of a Large Eddy Simulation (LES), a detailed analysis of the instantaneous flow regime was possible. The distribution of velocity and turbulence fields, as well as coherent turbulent structures within the pools allowed for a better understanding of fish behavior.

Turbulent pressure fluctuations

The instantaneous velocity or pressure fields can be divided into the mean values and corresponding fluctuations. The respective equation for the fluctuating pressure is:

\displaystyle {\tilde{p}}'=\tilde{p}-\left\langle {\tilde{p}} \right\rangle

An examination of the turbulent pressure field shows, that the turbulent pressure inside of vortices is negative. The local minimum values of the turbulent pressure indicates cores of large scale vortices, as shown in Figure 2. In the fish passage, several horizontal rollers can be observed. The vortices are formed inside the shear layer of the sluice. With increasing running distance of the vertices, the turbulent pressure inside the rollers increases due to the increasing vortex diameter and the decreasing turbulent pressure amplitude.

Isosurfaces of the turbulent pressure fluctuation

Analysis of the turbulent pressure in open channel flows in relation to coherent structures is quite difficult. Large scale vortices can rarely be detected by direct observation. This is due to the fluctuations of the water surface and the related pressure fluctuations inside the entire current. The pressure fluctuations invoked by surface waves decrease with the water depth z by the following exponential law [Kundu, 2004]:

\displaystyle {p}'\propto {{e}^{{-kz}}}

The superposition of different pressure fluctuations makes it difficult to detect large scale coherent structures near the surface.

Q-Criterion

Another tool for vortex detection was proposed by Dubrief (2000) and Hunt (1988), who compared isosurfaces of the pressure, of the vorticity and of the Q-criterion.

Read more…

Classé sous :Hydraulics Balisé avec :FLOW-3D, hydraulic, water

Articles récents

  • FLOW-3D CAST v5.1
  • Simulation et optimisation pour minimiser les défauts de moulage
  • Vague verticale en forme de pic
  • Optimiser la conception pour la production de masse
  • Augmentation de la Capacité de Déversement avec le Déversoir en Clef de Piano

XC Engineering SRL

via Matteotti 7, 22063
Cantù (CO) - ITALY
Tel.Fax: (+39) 031 715 999

  • English (en)English
  • Italiano (it)Italiano
  • Français (fr)Français

Étiquettes

additive manufactory casting cfd dam Discharge energy fabbrication additive fabbricazione additiva FLOW-3D FLOW-3D Cast Fluid Dynamics foundry HPDC hydraulic hydraulics IMPROVEit laser LPDC Numerical optimization ottimizzazione Pelton Piano Key Weir powerplant river saldatura sand molded casting simulation spike wave toilet transient turbine vertical spike wave water wave welding

XC in social media

  • Facebook
  • Google
  • Linkedin
  • YouTube
Home | Company Data | Terms & Conditions | Privacy Policy |
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPTDECLINE
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Toujours activé
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Enregistrer & appliquer