XC Engineering Srl

  • Home
  • Société
    • Expertise
    • Histoire
    • Partenaires
  • Services
    • Conseil
    • Logiciels commerciaux
      • FLOW-3D
      • FLOW-3D Cast
      • IMPROVEit
      • Support et formation
    • Développement logiciels
  • Secteurs industriels
    • Aerospace
    • Automotive
    • Biotechnologie
    • Ingénierie maritime
    • Conception de navires
    • Hydraulique et Environnement
    • Fonderie
    • Peinture
    • Energie
    • Secteur manufacturier
    • Microfluidique
  • Nous contacter
    • Opportunité de travail
    • Thèse et Stage
  • Français
    • English English
    • Italiano Italiano
    • Français Français
Vous êtes ici : Accueil / Archives pour Raul Pirovano

19/06/2020 by Raul Pirovano

FLOW-3D CAST v5.1

Avec de nouveaux espaces de travail et un modèle de solidification de pointe SANTA FE, NM, 16 juin 2020 - Flow Science, Inc. a annoncé la sortie d'une version majeure de son logiciel de simulation de la coulée des métaux, FLOW-3D CAST v5.1, une plateforme de modélisation qui combine une précision extraordinaire avec la polyvalence, la facilité d'utilisation et le cloud computing haute performance. FLOW-3D CAST v5.1 comporte de nouveaux espaces de travail pour la coulée à la cire perdue, la fabrication de noyaux en sable, la coulée centrifuge et la coulée continue, ainsi qu'un modèle de solidification des alliages basé sur la chimie capable de prédire la résistance de la pièce à la fin du processus, une base de données étendue de manchons exothermiques et une création de géométrie interactive améliorée. FLOW-3D CAST dispose maintenant de 11 espaces de travail de processus qui couvrent le spectre des applications de coulée, qui peuvent être achetés individuellement ou en lots. "Le fait d'offrir des espaces de travail FLOW-3D CAST par procédé donne aux fonderies et aux ateliers d'outillage et de matriçage la flexibilité nécessaire pour équilibrer leurs besoins et leurs coûts, afin de répondre aux défis et aux demandes croissantes du secteur manufacturier", a déclaré le Dr Amir Isfahani, PDG de Flow Science. Le tout nouveau modèle de solidification de FLOW-3D CAST v5.1 fait progresser l'industrie vers la prochaine frontière de la simulation de la coulée - la capacité de prédire la résistance et les propriétés mécaniques des pièces coulées tout en réduisant les déchets et en répondant aux exigences de sécurité et de performance des produits. En accédant à une base de données des compositions chimiques des alliages, les utilisateurs peuvent prédire la résistance à la traction, l'allongement et la conductivité thermique ultimes afin de mieux comprendre à la fois les propriétés mécaniques et la microstructure de la pièce. "Cette version offre un ensemble complet - un concept d'espace de travail axé sur le processus pour chaque application de moulage, associé à notre remplissage sans précédent et, maintenant, à nos analyses révolutionnaires de microstructure et de solidification. Des connaissances spécialisées en matière de moulage préchargent les composants sensibles et les valeurs par défaut pour chaque espace de travail, mettant ainsi nos utilisateurs sur la voie du succès à chaque fois qu'ils effectuent une simulation. FLOW-3D CAST v5.1 va prendre d'assaut l'industrie", a déclaré le Dr Isfahani. De plus, les bases de données sur les coefficients de transfert thermique, les évents, les machines HPDC et les manchons GTP Schäfer fournissent des informations à portée de main des utilisateurs. La nouvelle base de données sur les manchons exothermiques et l'outil d'identification des points chauds de solidification aident les utilisateurs à les placer avec précision d'éviter le rétrécissement prévu. Un webinaire en direct présentant les nouveaux développements et la manière de les appliquer aux flux de coulée aura lieu le 15 juillet à 19h00. L'inscription est possible à l'adresse suivante : https://zoom.us/webinar/register/WN_gF4S7-oLR0SLO1MBZ80x0Q Pour une description détaillée des améliorations de la version 5.1 de FLOW-3D CAST, consultez le site : https://www.flow3d.com/products/flow-3d-cast/flow-3d-cast-v5-1/ … [Lire plus...]

Classé sous :Casting Balisé avec :casting, FLOW-3D Cast, foundry

25/07/2019 by Raul Pirovano

Simulation et optimisation pour minimiser les défauts de moulage

L’optimisation est la recherche de la ou les meilleure(s) solution(s) à un certain problème. Dans ce secteur, il s’agit d’un logiciel capable d’identifier, de suggérer et finalement de vérifier la meilleure combinaison de variables d’entrée offrant la solution la plus adaptée parmi toutes celles possibles.   Dans la plupart des cas, la relation sous-jacente entre les paramètres de contrôle (appelés variables d’entrée) et les performances mesurées (appelées variables de sortie) est inconnue ou difficile à trouver. De plus, il arrive de temps en temps qu’afin de trouver la réponse adaptée au système, il soit nécessaire d’utiliser des modèles numériques complexes qui demandent beaucoup de temps pour atteindre le résultat désiré : typiquement, c’est le cas lors de l’utilisation des simulateurs de processus en fonderie, dans lesquelles les résultats sont, en fonction des paramètres, le fruit de calculs de dynamique thermo fluide 3D longs et complexes.   Figure 1- Schéma du processus d’optimisation  Le logiciel d’optimisationIMPROVEit est capable de comprendre la nature et la complexité d’un problème et de faire l’interface entre de nombreuses applications, dont le simulateur de processus FLOW-3D® CAST (Flow Science inc.), et de les connecter entre elles afin de définir une trame de travail qui peut être parcourue de manière répétée et automatique afin d’obtenir la meilleure solution en un temps le plus réduit possible.  Etude de cas : Optimisation de la phase d’injection  Dans cette étude de cas présentée par FORM S.r.L. sur la conception de moules pour couvertures de batteries faites par HPDC, beaucoup d’endroits dans la structure présentaient de hauts taux de porosité dus au gaz. Il a donc été décidé d’utiliser l’optimisation afin de réduire les défauts en agissant sur la conception des chaines de moulage et en jouant sur la vitesse du piston. Pour nos besoins, les valeurs liées à la vitesse du piston dans la première phase ainsi que de nombreux paramètres géométriques liés aux chaines dirigées par les interactions entre l’optimisateur et le logiciel de CAD paramétrique ont été choisis comme variables d’entrée, l’objectif étant d’obtenir la meilleure calibration sur l’arrivée du métal au point de connexion du moulage et de réduire la quantité d’air entrainé dans l’alliage durant la première phase de remplissage. La trame de travail de l’optimisateur est structurée de la manière suivante : l’optimisateur communique directement avec le logiciel de CAD paramétrique afin de changer automatiquement la forme des chaines de moulage puis exporte automatiquement les modèles géométriques au format STL ; ces fichiers STL sont ensuite utilisés par le logiciel FLOW-3D® CAST  afin de simuler le remplissage. Enfin les variables de sortie sont extraites et traitées.   Figure2 – Paramètres d’optimisation de la phase d’injection, courtesy of Form S.r.l.   Lorsque deux objectifs sont évalués en même temps, il est possible de trouver une série de résultats optimaux différents faisant des compromis sur l’une ou l’autre des variables de sortie, appelé Front de Paréto. Etant donné que pour ce cas la trame de travail était parcourue en 20 minutes, il a été décidé de la parcourir une vingtaine de fois.   Cela étant dit, la configuration choisie est, dans ce cas, positionnée au centre du front de Paréto et, de ce fait, présente un bon compromis entre une arrivée lente et aussi uniforme que possible jusqu’au moule, de 10% plus effective que dans la configuration initiale, et une quantité minimale d’air entrainé, de 13% plus optimisé qu’à l’origine.    Figure 3 - Comparaison entre les solutions initiale et optimisée, courtesy of Form S.r.l.  Cette étude de cas montre donc en quoi l’automatisation et l’optimisation numérique de conception de produit, la simulation, l’interprétation des résultats et des changements permettent de gagner beaucoup de temps, et comment il est possible de parvenir à des améliorations importantes même en ne faisant tourner le programme d’optimisation qu’un nombre réduit de fois.  … [Lire plus...]

Classé sous :Casting, Optimization Balisé avec :casting, FLOW-3D Cast, foundry, IMPROVEit, optimization

04/07/2019 by Raul Pirovano

Vague verticale en forme de pic

Cette simulation est inspirée de la vidéo « 90ft Vertical Spike Wave in Slow Mo » réalisée par The Slow Mo Guys, et qui montre les résultats d’une expérience menée par l’Etablissement de recherche en énergie océanique FloWave. Nous utilisons des parties de leur vidéo afin de les comparer avec notre propre simulation. https://www.youtube.com/watch?v=iWKFPTgkpXo&t=105s   La Vague Verticale en forme de Pic  La Vague Verticale en forme de Pic fait suite au mouvement d’une vague concentrique vers son centre. En fonction de sa vitesse, la vague peut entrer en collision au milieu et former un pic d’eau. Cette vague peut être générée dans une piscine circulaire équipée de panneaux mobiles sur l’intégralité de son contour qui poussent l’eau en un mouvement coordonné vers le centre. Les panneaux doivent être activés en simultané en un même mouvement afin de pouvoir déplacer l’eau en un seul mouvement et la faire entrer en collision à la même vitesse et avec la même énergie. Si la vitesse est suffisamment haute, l’eau va s’élever au milieu de la piscine [Figure 1] et retomber en éclaboussant.   Figure 1 - Vague verticale en forme de pic Paramétrage du modèle sur FLOW-3D®  Le logiciel FLOW-3D a été utilisé pour paramétrer la simulation de la vague verticale en forme de pic, puis le résultat a été post-traité avec le logiciel FlowSight. Afin de pouvoir modéliser facilement la vague circulaire, la mesh a été définie selon des coordonnées cylindriques. Cela nous a permis notamment de ne simuler qu’une partie de la piscine [Figure 2], puis de la dupliquer lors du poste-traitement sur Flow Sight afin de donner l’impression que la piscine avait été simulée en entier.   Figure 2 - Setup FLOW-3D La plupart des mesures étaient données dans la vidéo des Slow Mo Guys, donc il a été possible de faire la simulation correctement à l’échelle. La piscine fait environ 50m de long, et est équipée de 168 panneaux. Nous avons estimé qu’il fallait 4s aux panneaux pour faire un aller-retour avec un angle de 17.2°.  Pour configurer la simulation, nous avons créé la piscine directement sur FLOW-3D en utilisant les géométries de base proposées par le logiciel, puis nous avons importé le panneau sous forme de fichier STL. Le panneau a été défini comme un objet mouvant [Figure 3], auquel il a été appliqué un mouvement défini à l’avance. L’eau est immobile à l’origine, et un mouvement des panneaux est suffisant pour générer la vague.   Figure 3 - Panneaux poussant l'eau Résultats Le mouvement et l’énergie globaux du système correspondent à la réalité de manière assez précise. On peut apercevoir des différences au niveau de l’extrémité du pic : cependant l’effet est négligeable dans le cadre de notre comparaison, et serait facilement pris en compte dans une simulation complète en 3D avec un modèle physique à deux fluides.   Figure 4 - L'expérience et la simulation côte à côte … [Lire plus...]

Classé sous :Senza categoria Balisé avec :cfd, FLOW-3D, hydraulic, hydraulics, simulation, spike wave, vertical spike wave, wave

19/06/2019 by Raul Pirovano

Optimiser la conception pour la production de masse

Introduction La phase de développement d'un produit implique différentes phases de calcul et de conception qui fournissent une série d'étapes prédéfinies pour atteindre la phase de production en série. Au vu de cet objectif, compte tenu du nombre élevé de pièces à produire, toute économie de matière est avantageuse et pertinente d'un point de vue économique. Les parties impliquées dans la production ont besoin de réduire les déchets (avantageux pour la fonderie) et de réduire le poids des composants (avantageux pour le client final). Le processus d'optimisation de la forme du produit aide les deux parties (fonderie et client) à trouver les bons compromis afin de pouvoir faire des économies adéquates tout en conservant des pièces de qualité maximale. Dans cet article, nous montrerons le processus d'optimisation de la conception pour la production en série d'un produit de fonderie en utilisant un logiciel d'optimisation et un simulateur de processus. L'objectif est d'analyser la solidification du métal présent dans le système dont il est question, et d'évaluer comment l'optimisation permet aux deux parties impliquées d'en tirer profit. Développement du projet Figure 1 - Composant à produire Le composant à optimiser dans cette étude est réalisé par une coulée de métal en sable, l'une des techniques les plus anciennes, simples et économiques. La phase de conception préliminaire a fourni un prototype en format stéréolithographique (STL) déjà potentiellement bon pour la production (le modèle a été fourni en nature avec l'autorisation de Flow Science Deutschland). Sur l'image [Figure 1], vous pouvez voir le système d'alimentation du système (en jaune) et la géométrie de la pièce à produire (en rouge). La masse de la pièce unique de cette configuration de départ est de 2.197kg, celui de l'ensemble du système est de 3.126kg. L'objectif principal est d'obtenir, en agissant sur certains détails des géométries elles-mêmes, une masse totale du système aussi faible que possible sans avoir de porosité significative dans la pièce. Afin d'obtenir le meilleur résultat possible, les paramètres désignés comme modifiables sont la taille du système d’alimentation [Figure 2], l'épaisseur de la paroi verticale la plus proche de ce dernier et l'épaisseur de la zone de transition entre les deux parois [Figure 3]. Figure 1 - Premier paramètre d'optimisation Figure 3 - Deuxième et troisème paramètres d'optimisation Les variables en jeu sont donc potentiellement multiples, et explorer manuellement toutes les combinaisons possibles peut être un travail très long et complexe. C’est pour cette raison que nous avons choisi d'utiliser un optimiseur numérique capable d'explorer les solutions de manière indépendante. IMPROVEit a donc été choisi. Son interface simple vous permet d'effectuer facilement à la fois la phase d’initialisation et le traitement des résultats. FLOW-3D® CAST a été également choisi comme simulateur de procédé pour sa précision, sa fiabilité et sa facilité d'utilisation en fonderie. En ce qui concerne la modification de la forme géométrique, le logiciel d'optimisation permet à la fois d’interagir directement avec la CAO paramétrique si le fichier est en format original, ou de modifier directement dans IMPROVEit un fichier STL si, comme c’est le cas dans ce test, seul ce dernier est disponible. Une fois les paramètres à corriger sélectionnés, le logiciel peut modifier en interne la forme des géométries, lancer les simulations de solidification en interaction avec le logiciel de traitement FLOW-3D® CAST en utilisant les géométries modifiées, extraire les résultats des analyses et les traiter avec les nœuds mathématiques appropriés pour obtenir le résultat optimisé. La [figure 4] montre la feuille de travail de notre étude de cas. Figure 4 - Réseau d'optimisation Afin de détecter la dimension de la porosité de retrait présente à la fin de la simulation de la solidification, quatre volumes de contrôle divisant la géométrie en quatre zones distinctes ont été mis en place ([Figure 5]), la partie supérieure est en bleu foncé, la partie centrale en jaune, la partie gauche en cyan et la partie droite en magenta. Parmi celles-ci, seules trois sont pertinentes pour l'optimisation, d’après les exigences du client : la porosité présente dans la partie supérieure (bleu foncé) n'a pas été prise en compte. Dans la configuration initiale, le volume total de porosité de retrait dans les trois volumes de contrôle considérés est de 581 mm3. Figure 5 - Volumes de contrôle Exécution Pour les besoins du processus d’optimisation, deux objectifs et une contrainte ont été désignés : minimiser le poids du système d’alimentation ainsi que celui du poids de la pièce, tout en faisant en sorte que les défauts de la pièce ne soient pas visibles, ce qui représente une contrainte sur le volume de porosité dans les trois volumes de contrôle. La mise en place d'une optimisation avec deux … [Lire plus...]

Classé sous :Casting, Optimization Balisé avec :casting, cfd, FLOW-3D Cast, IMPROVEit, optimization, sand molded casting

17/06/2019 by Raul Pirovano

Augmentation de la Capacité de Déversement avec le Déversoir en Clef de Piano

Caractéristiques du Déversoir en Clef de Piano Le Piano Key Weir – ou Déversoir en Clef de Piano – est un modèle particulier d'évacuateur en labyrinthe. Il est composé d’une alternance de surfaces inclinées, l’une dans le sens d’écoulement de l’eau, l’autre dans le sens opposé à l’écoulement. Chacune de ces pentes est séparée par un mur vertical suivant la géométrie. Vu d’en haut, il s’agit d’un rectangle découpé en sections de taille égales dans le sens de la largeur. Pour chacune des sections, l’un des côtés perpendiculaires au courant est abaissé, créant une pente sur laquelle l’eau peut couler ou s’accumuler, en fonction du côté sur lequel est abaissé la section. Cette structure surmonte une sorte de muret de hauteur variable.     Le Piano Key Weir est généralement utilisé en sortie de barrage, l’idée étant de disposer d’une construction qui soit suffisamment solide pour résister à la pression créée par une quantité élevée d’eau dans un réservoir ou une rivière en période de crue, qui permette d’évacuer le trop-plein d’eau, et qui soit suffisamment simple pour ne pas être trop couteuse.     Utilité du Déversoir en Clef de Piano   Le Piano Key Weir est donc un déversoir à écoulement libre. Du fait de sa géométrie, il est possible de faire augmenter sa capacité d’évacuation de manière significative. Les études menés sur ce type de déversoir ont deux objectifs : construire des déversoirs solides et peu couteux pour la suite, mais aussi renforcer les structures plus anciennes, ce qui permet notamment d’éviter les accidents. En effet, en les plaçant en aval de barrage et en amont des villes, ils permettent de contrôler le débit d’eau, et donc d’éviter les inondations. Le Piano Key Weir rend possible la décharge importante et contrôlée d’une quantité soudaine et très élevée d’eau.     Ce type de déversoir présente plusieurs qualités primordiales. Tout d’abord, il est facilement installable sur des constructions déjà existantes, contrairement aux déversoirs en labyrinthe classiques. De plus, sa forme alternant les pentes montantes et descendantes permet de créer deux flux différents selon que l’eau arrive sur l’une ou l’autres des pentes. Lorsque l’eau passe dévale la pente descendante, elle coule sous forme de jet vers le bas du barrage, et lorsqu’elle est d’abord contenue par la pente ascendante, elle s’écoule sous forme de film avant de rejoindre le jet un peu plus bas. Cette division des flux permet de ralentir considérablement le débit d’eau, de manière beaucoup plus efficace qu’un barrage droit traditionnel pourrait le faire.     Résultats de la simulation    Afin d’observer les effets du Déversoir en Clef de Piano, nous avons effectué une simulation numérique avec le logiciel FLOW-3D® en en plaçant un dans un cours d’eau. Nous sommes restés sur un model setup classique, étant donné qu’il a été montré que c’était celui qui permettait d’obtenir les résultats les plus proches de la réalité. On observe bien l’écoulement caractéristique de l’eau sur les “touches” du piano, et la diminution du débit après le passage sur le déversoir.     On observe une différence de seulement 2% à 4% entre les résultats expérimentaux et la simulation avec FLOW-3D en moyenne. Seule la résolution de la mesh est un facteur déterminant en ce qui concerne l’exactitude de la simulation, mais celle-ci n’a qu’une influence de 3-4% maximum, ce qui signifie que dans tous les cas les résultats ne montent, au plus, qu’à 6% d’erreur.    … [Lire plus...]

Classé sous :Environmental, Hydraulics Balisé avec :cfd, dam, Discharge, FLOW-3D, Fluid Dynamics, hydraulics, Numerical, Piano Key Weir, simulation

  • 1
  • 2
  • 3
  • Page suivante »

Articles récents

  • FLOW-3D CAST v5.1
  • Simulation et optimisation pour minimiser les défauts de moulage
  • Vague verticale en forme de pic
  • Optimiser la conception pour la production de masse
  • Augmentation de la Capacité de Déversement avec le Déversoir en Clef de Piano

XC Engineering SRL

via Matteotti 7, 22063
Cantù (CO) - ITALY
Tel.Fax: (+39) 031 715 999

  • English (en)English
  • Italiano (it)Italiano
  • Français (fr)Français

Étiquettes

additive manufactory casting cfd dam Discharge energy fabbrication additive fabbricazione additiva FLOW-3D FLOW-3D Cast Fluid Dynamics foundry HPDC hydraulic hydraulics IMPROVEit laser LPDC Numerical optimization ottimizzazione Pelton Piano Key Weir powerplant river saldatura sand molded casting simulation spike wave toilet transient turbine vertical spike wave water wave welding

XC in social media

  • Facebook
  • Google
  • Linkedin
  • YouTube
Home | Company Data | Terms & Conditions | Privacy Policy |
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPTDECLINE
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Toujours activé
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Enregistrer & appliquer